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We derive two systems of coupled-mode equations for spatial gap solitons in one-dimef@nahd
quasi-one-dimension&1D) photonic lattices induced by two interfering optical beams in a nonlinear pho-
torefractive crystal. The models differ from the ordinary coupled-mode syseeq, for the fiber Bragg
grating by saturable nonlinearity and, if expanded to cubic terms, by the presence of four-wave-mixing terms.
In the 1D system, solutions for stationary gap solitons are obtained in an implicit analytical form. For the Q1D
model and for tilted“moving”) solitons in both models, solutions are found in a numerical form. The existence
of stable tilted solitons in the full underlying model of the photonic lattice in the photorefractive medium is
also shown. The stability of gap solitons is systematically investigated in direct simulations, revealing a
nontrivial border of instability against oscillatory perturbations. In the Q1D mdudal, disjointedstability
regions are found. The stability border of tilted solitons does not depend on the tilt. Interactions between stable
tilted solitons are investigated too. The collisions are, chiefly, elastic, but they may be inelastic close to the
instability border.
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I. INTRODUCTION lattices[15], using a two-beam excitation scheme.

It is well known that a periodic modulation of the optical A generic description of the GS's is provided by the
refractive index not only modifies the spectrum of linearcoupled-mode theoryCMT), which amounts to the deriva-
waves, but also strongly affects the nonlinear propagatiotion of a system of coupled equations for interaction of for-
and self-trapping of lighf1,2]. Recently, the formation of ward and backward wavé¢g]. The standard CMT system for
spatial solitons in optically induced reconfigurable photonicmedia with Kerr(cubic nonlinearity is equivalent to a gen-
lattices created in photorefractive materials was predicte@ralized massive Thirring model. However, unlike the mas-
in Ref. [3] and demonstrated experimentally in one-sive Thirring model proper that includes only cross-phase-
dimensional1D) [4,5] and two-dimensional2D) [6] geom-  modulation(XPM) nonlinear terms, its generalized version
etries. In this case, the strong electro-optic anisotropy of &which includes self-phase-modulati¢8PM) too] is not in-
photorefractive crystal is employed to create the lattice bytegrable. Nevertheless, a family of its GS solutions can be
two (or more interfering laser beams in the ordinary polar- found in an explicit analytical fornj16]. These solutions
ization, while the solitons are observed in the probe beamdepend on two essential parameters, which determine the
which is launched in a strongly nonlinear mode with thesoliton’s amplitude and velocity. The stability of the GS's
extraordinary polarization. was first investigated by means of the variational approxima-

Periodically modulated nonlinear systems can also suption in Ref.[17] and then, with the help of rigorous methods,
port self-trapped localized pulses or beams in the form obased on numerical computation of stability eigenvalues
gap solitons(GS’s), which are hosted by a band gap of the [18]. Both approaches demonstrate that the GS family has a
system’s linear spectrum, induced by the resonant Braggontrivial border of stability against oscillatory perturba-
coupling between forward- and backward-propagating wavetsons, while the entire family is stable against nonoscillatory
[2,7]. A notable property of the GS's is that, unlike ordinary perturbations in accordance with the Vakhitov-Kolokolov
solitons which require self-focusing nonlinearity, they can(VK) criterion[19] applied to these solitons.
exist in both self-focusing and self-defocusing media. In this paper, we study soliton effects in photonic lattices

Traveling temporal-domain GS’s have been observed exinduced by interfering optical beams in a nonlinear photore-
perimentally in Bragg gratings written in silica fibel8].  fractive crystal and derive two CMT models for spatial GS'’s,
The concept of a spatial-domain GS was also proposedhich correspond to the 1D and quasi-1@1D) geometries.
[9,10] and elaborated in more detdil1-13 in various Unlike the usual generalized massive Thirring model, these
waveguide settings. Experimentally, spatial GS’s were cremodels feature saturable nonlinearity and, if expanded to cu-
ated in waveguide array44] and optically induced photonic bic terms order, the proper-1D model includes not only XPM
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and SPM terms, but also four-wave mixingWM) and A. One-dimensional model

nonlinear-coupling ones. To derive the coupled-mode equations for the forward and

The paper is organized as follows. In Sec. Il we considerpackward waves, we approximate solutions of By.by
in a brief form, a generalized model of the photorefractive

medium, which includes a dynamical equation for the pump E(x,2) = u(x,2) € +v(x,2e™, 3)
wave(the one which creates the lattjcén the latter case, we \ynerey anduv are slowly varying[in comparison with the
demonstrate that, in the lowest nontrivial approximation, the.5rier waves exxikx)] envelopes of the forward and back-

probe fielddoes notgive rise to a feedback perturbing the ward waves. Substituting the expansi@ into Eq. (2), we
lattice. In the rest of the paper, we chiefly focus on the stud erform the Fourier expansion with respect to (@ikix)

of the properties of gap solitons in our CMT models, as thes nd, in the spirit of the CMT approach, keep only the lowest-

models are subjects of interest in their own right, representc')rder harmonics. After a straightforward calculation, this
ing a new class of couple-mode equations. In Sec. lll, W8aads to the following equations:

find analytical solutions for GS’s in the 1D model and con-
struct a full family of gap solitons in a numerical form for U du (u-v)

both models. In the same section, we report results which '5 T x VoL +u—oP) + 1+ 2(u+vP)’
make it possible to identify stability regions of the GS’s 0
(which are quite different in the 1D and Q1D models, as two v Py (v - )

disjointed stability intervals are found in the latter gnin i——iK—=- = > =. (4
Sec. 1V, tilted (“moving”) gap solitons are considered, and gz X Nlg(1+|u-v[H) +1+2u*+ |v]?)

their stability border is identifiedwe find that it does not Equations(4) constitute 2CMT modeMith saturable nonlin-
depend on the tilt The existence of stable tilted solitons in earity. It contains one irreducible parametgrwhile K may
the full model of the photorefractive medium with the em- e apsarhed into rescaling &f Note that the expansion of
bedded photonic lattice is shown too. To the best of OUkng gatyrable nonlinearity in these equations up toxfie
knowledge, this ishe first demonstratioof stable tilted soli- (cubig) order generates not only XPM and SPM terms, as in

tons in this physically important model. In Sec. IV, we alS0 ¢ 3] generalized massive Thirring model, but also FWM
consider collisions between tilted solitons, which may be four-wave-mixing ones, u%" and v2’, which originate

both elastic and inelastic. The paper is concluded by Sec. V5, the termgu—v|2u and|u-v|? in the two equations.

Equationg4) can be combined into a system in which one
equation is linear,

II. COUPLE-MODE EQUATIONS

. d .
Following Refs.[3-5], we consider the propagation of a I Um0) +iK— (u+v) (5)
probe beam with the extraordinary polarization through a
periodic structure in arjeffectively planar photorefractive 2u-v)
medium. The structure is written by counterpropagating - - = (6)
pump beams launched in the ordinary polarization. The Vig(1 +[u=v[?) + 1+ 2AJu]>+[v[?)

electro-optic coefficients in the crystal strongly differ for the
two polarizations, the waves in the ordinary polarization be-
ing nearly linear. Therefore, the optically induced grating,
which is created, in the& direction, by the interference pat- ) ] o
tern of the counterpropagating beams, is essentially har- !N the physically relevagt case, the photonic-lattice inten-
monic, with the intensity distributionl y(x)=1, co(Kx), Sity 1S Iarge—|.e.,lo>;,|u| |v[%_hence, the square root in
where Eq. (6) may be approximated byl o(1+|u-v|?), except for a
vicinity of point(s) wherew=u-uv vanishes. Using this ap-
proximation and eliminatingu+v) by means of Eq(7), we
reduce Eq(6) to a single equation fow(z,x),

Pw K2(?z_vv 2i&< w ):

V(L + w3

i&iz(u+v)+iKﬁix(u—v)=O. 7)

K =2mo\ "1 cosé, (1)

\ is the pump wavelengthg is the angle between wave 27 + =2
vectors of the plane waves and tleaxis, andn, is the iz’ Y
refractive index in the ordinary polarization. Provided that
the intensity of the probe bearfE|?, is much weaker than
the pump intensity,, one may neglect feedback action of the
probe beam on the gratinghis point will be substantiated
below). Then the evolution of the local amplitud&x,z) of
the probe beam in the free directiarobeys a known equa-
tion [3-5], whose normalized form is

(8

We have checked the accuracy of the simplified equdBan
comparing its analytical solutions for solitorisee below
and their stability with direct numerical solutions of E¢B)
and (7). As will be shown in Sec. Ill, a conspicuous differ-
ence appears only in the region kf<3, where the CMT
does not adequately approximate E2). anyway.
Linearization of Eq.(8) and substitution of linear-wave
solutions in the form ofv~ expiqz+ipx) yields the disper-

iﬂz + 17E E -0. (2) sion relationyl,q=-1+\1+1,K?p?, according to which the
9z 2x* 1+1gco(Kx) +|E[? band gap which may host GS’s is
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150 T - T - lo>1, the Q1D version of the CMT equations takes the form
1,=25.5,K=0.5 a . (U-v)

100 I——+IK— = > =

gz X Al +[ul*+[vl)
N

ov . dv v—u

50 P i ( 2) _ (10
gz X Al +[ul*+[v])

0 I

cf. Egs.(4). Note that the band gap generated by the linear-
ized version of these equations coincides with B). As
well as in the case of the 1D version proper, EG6) can be
combined into the linear equati@f), but the remaining non-
linear equation cannot be reduced to a relatively simple
equation for the single functiow, unlike Eq.(6).

C. Feedback of the probe waves onto the photonic lattice

1 To conclude the consideration of the models, it is relevant

| . . .

100 to briefly address the issue of the reciprocal effect of the
probe waves in the extraordinary polarization on the pump

waves, which form the photonic lattice in the ordinary polar-

FIG. 1. The integral power of the soliton vs the propagation. = . .
constant, in the first finite band gap of Eg) (the shaded areas are ization. To this end, we assume that the strong fielghich

the Bloch bands which confine the band afhe parameters are PUilds the grating and the weaker signal fi@ldobey a sys-
1o=25.5 andK =0.5. The solid and dashed lines show, respectively,l8M Of coupled equations
a direct numerical solution of the stationary version of Ex).and

1
0
X

the analytical one, as obtained from E@$8), (17), and (3). Ex- LF - — 5 =3-0, (11
amples of numericafa) and analytical(b) profiles of the soliton, 1+ |F| + |E|
taken close to the edge of the band dapq=0.39, pointA), are
shown in the bottom part of the figure. . 1 F
P g iE,+ SV2E- ——>———>=0; (12
2 1+|F]*+|E|

—
0<-g=2hlo=Q © cf. EqQ.(2). Here,IA_ is a linear operator governing the propa-

[without the above simplification which led to E(B), the  gation of the strong fieldits exact form is not essential; see
linearization of Eqs(4) yields the band gap which differs below) whose eigenmodE(O), which gives rise to the grat-
from Eq. (9) by the substitutiony— ly+1]. In comparison ing, is such that

with the first exact finite gap in the underlying equati@, o2 _

where we will compare the solitons found from E¢®. and [FiI =10 cosi(k), (13

(4) for large lo (see Fig. 1 beloy the band gap9) is 45 was assumed above. The only essential conjecture about
broader, roughly, by a factcr1.6. Eqgs.(11) and(12) is that the interaction terms in both equa-
tions are derived from theingle termin the system’s La-
B. Quasi-one-dimensional model grangian density, which i€;,,=-In(1+|F|2+|E[?).

As before, we assume a signal field in the form of 8.
Now, we also assume that the feedback fromEHeeld will
affect theF field, so that the solution for the latter field
should be looked for, instead of the “frozen” for(h3), as

Another physically relevant possibility is to consider a
two-dimensionalactually, Q1D situation, with the angle be-
tween the wave vectols, , of the probe waves and the axis
z essentially different from 90°, while the spatial evolution is
still in the direction ofz (cf. a similar configuration, but for a IFl?=1(z,x)cokx + ¢(z,X)], (14
model with quadratic nonlinearity, introduced in REZ0]). _ )

In this case, the difference from the above derivation forWhere! and ¢ are slowly varying functions. To take the
mally amounts to the fact that, in the expressioru|? feedback into regard, we substitute express(@)gnd(14)
= |u[2+|v|2= (uo" +U'v), the wave-mixing terméhe last two into Egs.(12) and (11) and perform the calculation in the

ones must be dropped, as they correspond to the combine{—'rSt nontrivial approximation with respect to the small pa-

tions Hk,—k,) of the wave vectors, which, if later added to _rameten‘l’z. In fact, for Eq.(12) this was done before_, Iea_d-
the basic wave vectors; ,, generate new onesk2,+Ks ;. ing to Egs.(4). In the proper-1D model, the approximation
In the 1D model proper. wittk,=—k,, one has 2i,2+k£,1 leads to a Fourier expansion in the form
=k, hence, the wave-mixing terms contribute to the 1 1 -2 co$2kx+ 2¢)
coupled-mode equations that are derived by dropping all the 1+|FP+|E]? = +
harmonics but the two basic ones. However, in the Q1D

situation, the wave vectorsk2,+k,; generate different where “h.o0.h.” stands for higher-order harmonic terms. After
harmonics. Thus, with regard to the underlying assumptionihe substitution of this in Eq11) and taking into regard that

= h.o.h., (15
VINL+|u-of?
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the strong fieldF is carried by the harmonic cls+ ¢) Je . eg x+iK/q
[see Eq.(14)], we conclude that, in the present approxima- {uvt~ =+ ?e'qz sech \ = e ) (21)

tion, source terms that would drive slow evolution|, x)

and ¢(z,x) cancel out to be zeroThis result actually which mimics the exact form of the GS solution in the gen-

amounts to an elementary fact: the expressioriko@sp)[1  eralized massive Thirring moddl16]; however, in the

-2 cog2kx+2¢)]=—cog3kx+3¢) does not contain a term present model it is only an approximation valid for smeall

~cogkx+¢). In the other limit,|g|— 0 [close to the left edge of the
With straightforward modifications, the same result can beband gap(9)], the soliton assumes the shape of a broad

obtained for the Q1D model. Thus, for both models consid-‘compacton” with a large amplitude,

ered here, the conjecture of the frozen lattice field, which

. . .. . ip X K|1/4
was tacitly adopteq above, is definitely justified for the large W(X) = ——cog |Q|/ X< 7Klg (22
background intensity,,. TR Kig 2|q|
andW(x)=0, if |x| > 7K13#/(2|q|). However, the conditions
1. STATIONARY GAP SOLITONS under which Eqs(4) were derived from Eq(2) do not hold
A. One-dimensional model in the latter case, and as will be shown below, the compacton

) ) ] ) belongs to an unstable part of the soliton family.
Proceeding to soliton s.olut|ons. of thg CMT systems intro- 1 verify the validity of the CMT approximation for the
duced above, we start with the simplified version of the 1Dgescription of solitons in the underlying photorefractive
model, Eg. (8). The solution is sought for asv(x,2)  model (2), in Fig. 1 we compare the family of analytical
=e%W(x), whereq is a real propagation constant and a realsp|ytions based on E¢18) and the ones found numerically
function W obeys the equatiod®W/dx*=—-dIles/dW, with  from Eq. (2). The comparison is presented in terms of a
an effective potential global characteristic of the soliton family—viz., the integral
o 2 power,N=[*7|E(x)|?dx—vs the propagation constagt The
Mes(W) = —2\/\/2 +— =(V1 +W2-1). (16) approximation(3), which assumes that the amplitudeand
2K K\Vlo v are slowly varying functions ofk in comparison with

Equation(7) shows that, for the stationary solutions, the un-€xp(xiKx), yields the integral power in terms of the CMT

derlying fieldsu andv can be expressed in terms\&f(x), description:
1, <iK dw ) +°°
= —dazdp| 200 4\ 17 N= ul?+ o[> dx. 23
{uv}=">é 4 dx : (17) (PP (23)
where ¢y, is an arbitrary phase shift. An example of direct comparison of the soliton’s shapes is

Itis easy to check that, if the propagation consi@ie- 15 included in Fig. 1. Naturally, the approximation is ap-
longs to the interva(9), the effective potentiall6) has two  propriate sufficiently close to the band gap’s edge, when both
symmetric minima, giving rise to GS solutions that can bemodels yield broad solitons. We also note that the negative

written in an implicit analytical form, slope of theN(q) curve suggests stability of the entire soliton
2 family as per the VK criterion—i.e., the absence of real ei-
o dW o dl . .
K I =-(@@W+ =1 +W2-1). (18)  genvalues in the spectrum of small perturbations around the
X Vlo soliton[19]. However, the solitons may be subject to oscil-

As follows from Eq.(18), the squared amplitude of the latory instabilities corresponding to complex eigenvalues;

soliton’s wave field, which is attained at a point where S€€ below. _ o
dW/dx vanishes, is Although Fig. 1 shows that the direct applicability of the

CMT approximation is limited to a rather narrow interval of
values of the propagation constaptwe find it relevant to
study the solitons generated by the two new CMT systems in
, o a systematic way, as the topic is of interest in its own right,
In the small-amplitude limit—i.e., for representing GS’s of a new type. Results of the consideration
— (9 _lal 1) < are reported below.

0<e=2(2-lqhvl) <1 (19) Stationary solutions to the CMT equatiof®) [without
[which implies proximity to the right edge of the band gap the simplification leading to Eq8)] were looked for as
(9)]—the GS asymptotically coincides with the conventional )
nonlinear-Schrédinger soliton, {uzx),v(zx)} = €¥¥U(x),V(x)}, (24)

8
\ernax: T(z - \"E)|q|)-
glo

- gl x applying the shooting method to the resulting equations for
W(x) = Vesec > K- (200 U(x) andV(x). A typical example of a stable GS found near
0 the edge of the band gaf®) is displayed in Fig. 2(the
Note that, in this case, expressioffs?) can be cast in a soliton stability is considered in detail belpwt features the
closed form, symmetry U(-x)=-V(x), which is obviously compatible
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2 2 2
Re(V) r, ~m(V)
AN ik
0 7/ 0 £ s
\/Re(U) Im(U)\/ el
-2 -2 No Solitons
-40 =20 0 20 40 40 -20 0 20 40

-40

Unstable solitons

FIG. 2. A gap soliton found in the full CMT syste), at the
same values of the parametelg=25.5 andK=0.5, which were 0
used in Fig. 1. Hereg=-0.2][cf. the valueQ~=0.4 at the edge of
the corresponding band g&@)]. In fact, this soliton is quite accu-
rately approximated by the analytical expressigh3) (with ¢
=-3m/4) and (20). The lower panel illustrates the dynamical sta-
bility of the soliton.

FIG. 4. The dashed and dotted lines are, respectively, stability
borders of the gap solitons in the full coupled-mode sys#nand
in its simplified version which amounts to E@). The upper solid
border is the band gap’s edges2/41,; see Eq(9).

with Egs.(4) and is the same as in the generalized massivéourth—order .Ru.nge—Ky.tta aIgorithm.for.advancin.gzirAs a
result, anintrinsic stability border which is shown in Fig. 4,

Thirring system. . e . ,
Global characteristics of the soliton families are shown, inVaS identified inside the GS family. When the GS'’s are un-

terms of theN(q) dependence, in Fig. 3. This figure, which stable, their instability is only oscillatory, in accordance with

shows the soliton families as found from both the CMT sys—the above findings showing that aI_I the GS splutions are \./K
tem (4) and its simplified versiori8), in which the solitons stable. An example of onset of.the instability is shown in Fig.
are available in the implicit analytical forrfi8), demon- 5. Eventually, the unstable solitons get completely destroyed

strates that a tangible difference between the CMT modeli’y the growing perturbationgather than rearranging them-

G e : Ives into stable solitons
and its simplified version appears only at small valuegof € . .
for which ZCtuaIIy the CI\/[I)1P equatio)r/1$ cannot be d?r?ved We have also tested robustness of the GS’s against diverse

from Eg. (2). We notice that all théN(q) curves satisfy the ::;gg dp:{tlsgg?]tézg_s'ar?gnsg?"?g ';hshstar?l'i E.O Iltgns hseurgllt\;]i
VK criterion, dN/dg<O0. ge distu : xample i wn in Fig. 6, w

The stability of the GS’s was tested by direct simulations soliton was perturb_ed by suddenly introducing a phase shift
which used the filtered pseudospectral method,iand the of ~0.47 between itsu andv components.

150 T - : '
—— CMT model 0 g g IUL)
- - - Simplified ot e ’
=5F RC(U) - E
100 -10 . . .
-80 -40 0 40 80
X
N
50¢
00 ()j5 1 — 1.5 FIG. 5. The lower panel shows an example of the spontaneous

—q onset of oscillatory instability in the component of the gap soliton
in the case ofy=25.5,K=0.5, andg=-0.05 (the initial profile of
FIG. 3. The dependenc®q) for the stationary solitons, found the soliton is shown in the upper pahélhe instability grows from
in a numerical form from the full system of the the 1D coupled- a very small numerical noise. In this figure and below, the dynamics
mode equation&4) and for the analytical solutions of the simplified is shown only in thes component if the picture in the component
system, which are given, in an implicit form, by E¢$8) and(17). turns out to be very similar.
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FIG. 8. Instability of the soliton in the quasi-1D model, whose
stationary form is shown in Fig.(B).

FIG. 6. Aresult of sudden multiplication of theandv compo-
nents of the stable soliton shown in Fig. 2 by phase-shifting factors
0.8+0.6. The parameters alg=25.5,K=0.5, andq=-0.2.

W ¢? 2q w
_+_2W+ > = 2:
dé K K21 V1 + W2 + (dW/dx)

0, (25
B. Quasi-one-dimensional model

the fieldsU(x) and V(x) being expressed in terms & the
same way as in Eq17). Equation(25) does not admit exact
analytical solutions. However, close to the right edge of the
gap (9)—i.e., whene, defined as per Eq19), is small—an
approximate solutiorn takes the form of E@O0), with an
additional factor ofy2.
As mentioned above, both paramet&sand |, can be
L7 “\Re(V) scaled out from the Q1D model; therefore, to present further
ol - So o | results, we will fixK=0.5 (as aboveandly=1. The band
\ / gap (which is 0<-gq<2, in the notation adopted herés
Re(U) entirely filled with numerically found soliton solutions. Even
. . . . . , , not very close to the right edge of the gap, the solutions,
-8 -6 -4 =2 0 2 4 6 8 whose typical examples are shown in Fig. 7, are quite similar
to those found above in the proper-1D model; cf. Fig. 2.

Searching for stationary solutions to E¢s0) of the Q1D
model in the form of Eq(24), it is easy to derive a single
equation forW(x) =U(x)—V(x):

2 However, stability properties of the GS’s in the Q1D model,
L2y Im(v) which were inferred from direct numerical simulations, turn
. N out to be very different in comparison with those reported

or - N \/_ ] above for the 1D model proper. Namely, E¢&0) generate
Im(U) two disjointedstability regions inside the band gap: a narrow

one, 1.106<—-q<1.125, and a broader region, ¥6-q<2,

-2 . ; . . . . . ; : .
-8 -6 -4 =2 0 2 4 6 8 which, as well as its counterpart in the proper-1D model,
@) X abuts on the right edge of the band dapte, however, that
1
- 0.5 0.5
;SR ,\Re(V) Im(U)

’ N 0 \
of ==~ \ [ 0 ~u

\ / 05 Re(U) Im(V)* #

Re(U)
-1 . . . . . ; . -1 -0.3
8 6 -4 2 0 2 4 6 8 -30 0 30 30 0 30
X

1 — .

// \\Im(V)

/ \

P N
0 - - ' 1
lul 0.5
Im(U)

-8 -6 -4 -2 0 2 4 6 8 = -20 0
) . %0 20 4

FIG. 7. Typical examples of stationary solitons found in the FIG. 9. A typical example of a stable tilted soliton in the 1D
quasi-1D model based on Egd.0) and (24) with K=0.5 andl, model (4), found forK=0.5 andly=25.5. The soliton corresponds
=1:(a) g=-1.125 andb) g=-1.4. to q=-0.3 andc=0.3 in Eq.(26).
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the relative width of this region, in comparison with the en- 0.5
tire band gap, is much smaller than in the proper-1D model;

cf. Fig. 4). In particular, the soliton shown in Fig(&, which

is located just at the edge of the narrower stability region, is 0-4f
completely stable, while the one shown in Figh)7is un-
stable, as illustrated by Fig. 8.

No solitons
0.3}
IV. TILTED GAP SOLITONS — Stable solitons

A. Coupled-mode equations 0.2}

The CMT approximation opens a way to investigate
novel phenomena which may be difficult to study directly
within the framework of the underlying models. An issue
of obvious interest are tiltedmoving GS's, of the form
(u,v)=€%%U(x-c2),V(x-c2). We will consider them only 0 . N \ \
for the 1D model based on Eg#&); however, results for 0 0.1 0.2 0.3 0.4 0.5 0.6
tilted solitons in the Q1D model0) are quite similar. ¢

Straightforward analysis, in the coordinate systemx FIG. 10. The stability region for titited solitons in the
—c2) [instead of the original systefa,x)], shows that, if the  proper-1D model withk=0.5 and 1,=25.5. Up to the accu-
solutions are sought for as racy of the numerical results, the border does not depend on the

0.1F Unstable solitons

; tilt c.
{u,p}=e¥UX'),V(X)}, X =x-cz (26)
A 400 —
| 0.5
E I
300} | 0""‘“"“"“"""*— ] 300
-0.5
“100 0 100
X
w200+ ] w 200F
100} ] 100}
0 . . o . —0 - : .
-200 -100 0 100 200 -150  -100 =50 0 50 100 150
(a) x (b) X
200 200
150} 150}
w100} w100}
50} 50}
o : : . o - - :
150  -100 =30 150 ~150  -100 =50 150

(©) (C)

FIG. 11. The application of the initial shove, in the form of the multiplication by(&x), to a stationary soliton in the underlying
equation(2) with K=0.5 andly=25.5. The results are presented by dint of contour plots of the local phwer)|?+|v(z,x)|. The initial
stable soliton, taken witq=-0.388, is shown irfa) (with its profile in the inset The shove wittk=0.05(b) andk=0.2 (c) generates stable
titled solitons, after some loss; the shove wkth0.4 (d) destroys the soliton.
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0.5
No solitons

<~ 041 :
1
0 1
X 0.3 1

-6 . .. 12

AN Inelastic collision 1 g

722N 1 =

/ %_ 0.2} 3

\ Y [e]

=—— X\ \ 400 . OQ I z
Ny — SO &
11 = ' 200z 0.1} !
0 1
=50 0 0 Elastic collision !
X 50 1
0 L 1 1

0 0.1 0.2 0.3 0.4 0.5

FIG. 12. Typical examples of elastic and inelastic collisions
between titled solitons in the 1D mod@). In this case],=25.5,

K=0.5, both solitons havg=-0.2, and their velocities ag =0.3, ) ] ) ) o
c,=-0.1. The difference is that, in the case of the elastic collision ~FIG. 13. Regions of elastic and inelastic head-on collisions be-

(upper pane| the phase difference between the solitondA ==,  tween two solitons, with tiltsc; >0 andc, <0, andg;=¢,=-0.2
while in the case of the inelastic collisioag$=0. (close to the instability border, which is gt=—0.19, in this case
in the 1D model(4) with 15=25.5 andK=0.5.

[cf. Eq. (24)], the band gaf9) shrinks to oMt
within the framework of the CMT system‘,(nax '=K=05.

0<-g<Q =QVl-(c/K)? (27)  The latter demonstrates théor 1, sufficiently large the

. . CMT approximation provides good accuracy for the tilted
and it does not exist fojc| > c M =K. solitonspgs well P ¢ y

Numerical solution of equations obtained by the substitu-
tion of the ansat426) into Egs.(4) demonstrates that the C. Soliton collisions

reduced gapi27) is completely filled with tited GS's. An The stability of the tilted solitons suggests a possibility to

example of a stable tilted soliton is shown in Fig. 9. . e . .
The stability of the tilted solitons was also tested in directf:OnSIder collisiondintersection between them. The most

simulations. As a result, it has been found that, up to thdmportant characteristic of soliton collisions is elasticity. Di-
available numerical accuracy, the stability bordee., the rect smulaﬂons of the 1D .modén) dcmonstrgte that the
value q, separating stable and unstable solifodees not interaction between th_e sollt_o_ns is quite elastlc,_unless they
depend on the til¢‘velocity”) c. An example of this is shown are Faken close to the mstablll_ty borc(fﬁne bo_rder 1S ?hOW”

in Fig. 10. Following the pattern of this figure, the stability n Fig. 10).' E)gamples of elastlc anq inelastic collisions are
region in the(c, -q) plane for any fixed, can be identified dlspllayeq in Fig. 12. Note that, in th|§ example, the two cases
by simply drawing the horizontal line at the valasqg are identical, except for the phase differedag between the

taken, for the samk, from Fig. 4. The fact that the stability solitons. In the case of the elastic collision, they haug

border does not depend anresembles a known feature of =m, hence, they repel each other, thus avoid strong overlap-

the GS family in the conventional generalized massiveng: which explains the elastic character of the collision. In

Thirring model, where the dependence of the stability bordeFhe opposite case, they halte=0 and therefore attract each

N o other. As a result, they strongly overlap during the collision
on the soliton’s velocity is extremely wedkg] (actually passing through each othehus generating strong
mutual disturbances. However, it should be stressed that,
even in the case of the inelastic collision, neither soliton gets

The existence of tilted solitons in the CMT system sug-completely destroye¢not only in this example, but also in
gests that they may also be found in the underlying equatiothe generic cage
(2), which is the model of the photorefractive medium with  Note that proximity of the solitons to the stability border
the induced photonic lattice. To check this possibility, weis determined by their propagation constams, but not the
simulated Eq.(2), multiplying numerically exact untilted initial tilts c, ,, as the stability border does not dependcon
solitons by exfikx), in order to “shove” them. Gradually However, the elasticity of the collision strongly depends, in
increasingk, we observed an increase of the tiltin the  this case, orc;, andc,, as shown in Fig. 13. The form of the
resulting stable soliton, up to some valog,, at kK=K elasticity region displayed in this figure is quite typical for a
beyond which the soliton was destroyed by the shove. Arsoliton pair taken close to the instability border. The lack of
example of this sequence of results, together with the origisymmetry relative to the diagonal,=—c,, is due to the fact
nal soliton, is shown in Fig. 11. Note that the maximum tilt that, below and above the diagonal, the colliding solitons
Cmax @Chievable in the simulations of E() in this example were taken, respectively, with¢=7 andA¢=1r, similar to
is quite close to 0.5; on the other hand, E2j/) shows that, the two different cases displayed in Fig. 12.

B. Tilted solitons in the full photonic-lattice model
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V. CONCLUSIONS in the photorefractive medium. The CMT correctly predicts
) ) the maximum tilt up to which the stable solitons can be
In this paper, we have derived two forms of the coupled-found in the full model. As far as we know, this is the first
mode theory for spatial gap solitons in photonic lattices opgemonstration of the existence of stable tilted solitons in the
tically written in a photorefractive medium. One model per-model of the photorefractive crystal with the embedded pho-
tains to the 1D case proper and the other one to the Qliynic lattice.
case. The models differ substantially from the ordinary cCollisions between tilted solitons have been investigated
coupled-mode  systentthe generalized massive Thirring too, showing that they are chiefly elastic, except close to the
mode) by a saturable character of the nonlinearity and thanstapility border. In the latter case, the elastic or inelastic
presence of FWM terms if the nonlinearity is expanded up tharacter of the collision also depends on the phase shift
cubic order. Besides the application to photorefractive mediapetween the solitons. The theoretical results reported in this
these models represent a novel type of CMT systems; therggork suggest new experiments with spatial solitons in opti-
fore, they are of considerable interest by themselves. StatioRe|ly induced lattices in photorefractive media.
ary solitons in the 1D model have been found in an implicit
analytical form, and in the Q1D model they have been found ACKNOWLEDGMENTS
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